Faculty    |   Research Faculty    |   Joint Appointments    |   Adjunct Appointments

Hsien-yu Wang
Research Associate Professor

Ph.D. SUNY at Stony Brook, 1989

Office: Basic Science Tower, T-5, Room 180
Lab: Basic Science Tower, T-5, Room 179
Stony Brook University
Stony Brook, NY, 11794-8661

Phone: 631-444-3489 (office)
Phone: 631-444-8844 (lab)
Fax: 631-444-3424

Wang Lab Site


Wnt pathways

One of our research interests is to delineate the Wnt signaling pathways that control early development. Three Wnt signaling pathways conserved from fly to human are known: Wnt/β-catenin (canonical), Wnt/cGMP/Ca2+ (non-canonical), and planar cell polarity (Wnt PCP) pathway. Disruption of Wnt pathways blocks development and induces early death. Abnormal activation of Wnt/β-catenin pathway, in particular, induces cancer. We established that Wnt signaling pathways are G-protein-coupled signaling pathways. Recently, my laboratory has demonstrated that inositol pentakisphoaphate, IP5, mediates Wnt3a-stimulated canonical signaling, operating at the level above GSK3β. Inositol phosphate 3 kinase (IP3K) and inositol phosphate multikinase (IPMK) are key enzymes to generate IP5 in cells. One of our research focuses is to understand the regulation and function of IPMK in Wnt canonical signaling.

The phosphoprotein scaffold Dishevelled is an essential component of both Wnt signaling and of the signalsome that constitutes the supermolecular “punctae” of assembled proteins often observed in fluorescence microscopy. Although replete with proteins that are known to dock to the three well-known domains (i.e., DIX, PDZ, and DEP) of the fly Dishevelled (Dsh) and the vertebrate isoforms of Dishevelled (i.e., Dvl1, Dvl2, and Dvl3), the C-terminal region beyond the DEP domain displays unique and interesting character. We are using biophysical, biochemical and cell biological methods to delineate the structural and functional importance of the C-terminal region of Dvl in Wnt signaling.

The role of Wnt/Frizzled pathways in differentiation and self-renewal of Human embryonic stem cells

Human embryonic stem cells (hESC) provide both a great model for analysis of cell signaling and development. Human ESC are totipotent and their therapeutic potential is highest if they can be provoked to defined stem cell populations that are homogenous and predictable in their growth and end-point differentiation (e.g., cardiac muscles cells, pancreatic beta cells, neural cell types). The inherent heterogeneity of hESC must be overcome if well-defined end-point populations are to be created, interrogated for their individual cell-type specific gene expression, and employed in therapeutics. Wnt ligands act on Frizzleds to guide cell development. We are using a novel method by which stimulation of each Frizzled can be achieved without a Wnt (which can activate more than one Frizzled type). We will characterize programmed cell differentiation and/or self-renewal of hESCs.

Selected Publications

Wang, HY., and Malbon, C.C. (2011) Probing the Physical Nature and Composition of Signalsomes J. Mol. Signal. 6: 1-10.

Wang, HY., and Malbon, C.C. (2011) Dishevelled C-terminus: Structural Insights Acta Physiolog. 195, Mar 29. [Epub ahead of print]

Ma, L., Wang, Y., Malbon, C.C., and Wang, HY. (2010) Dishevelled-3 C-terminal His Single Amino Acid Repeats are Obligate for Wnt5a Activation of Non-canonical Signaling J. Mol. Signal. 5: 19-29.

Yokoyama, N., Golebiewska, U., Wang, HY., and Malbon, C.C. (2010) Wnt-dependent Assembly of Supermolecular Dishevelled 3-based Complexes. J. Cell Science 123: 3693-3702. (see “In This Issue” for highlights)

Tao, J., Wang, HY., and Malbon, C. (2010) AKAR2-AKAP12 Fusion Protein “Biosenses” Dynamic Phosphorylation and Localization of a GPCR-based Scaffold J. Mol. Signaling 5: 17-39.

Okoye, U.C. and Wang, H.-y. (2008) Wnt and Frizzled RNA expression in human Mesenchymal and embryonic (H7) stem cells. J. Mol. Signal. 3:16-25.

Lee, Y.-N., Gao, Y. and Wang, H-y. (2008) Differential mediation of the Wnt canonical pathway by mammalian Dishevelleds-1, -2, and -3. Cell. Signal. 20:443-452.

Ma, L., and Wang, H-y. (2007) Mitogen-activated protein kinase p38 regulates the Wnt/cyclic GMP/Ca2+ non- canonical pathway. J. Biol. Chem. 282:28980-28990.

Gao, Y. and Wang, H-y. (2007) Inositol pentakisphosphate mediates Wnt/b-catenin signaling. J. Biol. Chem. 282:26490-26502.

Ma L., Wang H-y. (2006) Suppression of cyclic GMP-dependent protein kinase is essential to the Wnt/cGMP/Ca2+ pathway. J Biol Chem. 281:30990-1001.

Gao, Y. and Wang, H-y. (2006) Casein kinase 2 is activated and essential for Wnt/b-catenin signaling. J. Biol. Chem. 281:18394-18400.

Gavi, S., Shumay, E., Wang, HY, and Malbon, C.C. (2006) G-Protein-Coupled Receptors as Substrates for Tyrosine Kinases. Trends Endocrinol. Metabo. 17:48-54.

Wang, HY., Liu, T. and Malbon, C.C. (2006) Structure-Function Analysis of Frizzleds. Cell Signal. 18:934-41

Wang, HY., Tao, J., Shumay, E., and Malbon, C.C. (2006) Eur. J. Cell Biol. 85:643-50

Malbon, C.C. and Wang, HY. (2005) Dishevelled: A mobile scaffold catalyzing development. Curr. Top. Dev. Biol. 72:153-166

Lee, YN., Malbon, C.C. and Wang, NY. (2004) Gα13 Signals via p115RhoGEF Cascades Regulating JNK1 and Primitive Endoderm Formation. J. Biol. Chem. 279: 54896-54904

Yin, D., Gavi, S., Wang, HY., and Malbon C.C. (2004) Probing receptor structure/function with chimeric G-protein-coupled receptors. Mol. Pharmacol. 65:1323-32

Wang, HY. (2004) Wnt-frizzled signaling via cyclic GMP. Front Biosci. 9:1043-7.

Li, H., Malbon, C.C., and Wang, HY. (2004) Gene profiling of Frizzled-1 and Frizzled-2 signaling: expression of G-protein-coupled receptor chimeras in mouse F9 teratocarcinoma embryonal cells. Mol. Pharmacol. 65:45-55

Wang, HY. And Malbon, C.C. (2003) Wnt signaling, Ca2+, and cyclic GMP: visualizing Frizzled functions. Science 300:1529-30.

Ahumada, A., Slusarski, D.C., Liu, X., Moon, R.T., Malbon, C.C. and Wang, HY. (2002) Signaling of rat Frizzled-2 through phosphodiesterase and cyclic GMP. Science. 298:2006-10

Liu, T., DeCostanzo, A.J., Liu, X., Wang, HY., Hallagan, S., Moon, R.T. and Malbon, C.C. (2001) G protein signaling from activated rat frizzled-1 to the b-catenin-Lef-Tcf pathway. Science 292:1718-22.



Copyright © 2009 Stony Brook University. All Rights Reserved. Site designed by Academic Web Pages.